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BOUNDARIES IN TRANSPORT AND DIFFUSION 
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SUMMARY 

In the application of the finite element method to diffusion and convection4spersion equations over a 
ground-water domain, the Galerkin technique was used to incorporate Neumann (or second-type) and 
Cauchy (or third-type) boundary conditions. While mass movement through open boundaries is a priori 
unknown, these boundaries are usually treated as a zero Neumann condition at some far distance from the 
domain of interest. Nevertheless, cheaper and better solutions can be obtained if these unknown conditions 
are adequately incorporated in the weak formulation and in the transient solution schemes (open boundary 
condition). Theoretical and numerical proofs are given of the equivalences between this approach and a ‘well- 
posed problem in a semi-infinite domain with a zero Neumann condition at a boundary placed at infinity. 
Transport and diffusion equations were applied in one dimension to  show the numerical performances and 
limitations of this procedure for some linear and non-linear problems. No a priori limitations are foreseen in 
order to find similar solutions in two or three dimensions. Thus the spatial discretization in the proximity of 
open boundaries could be drastically reduced to the domain of interest. 
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INTRODUCTION 

Of particular concern in this study is the realistic modelling of open boundaries for diffusion and 
convection-dispersion equations over a ground-water domain. Mass movement through open 
boundaries depends essentially on the volumetric sources and sinks as well as on the conditions 
imposed on other boundaries of the domain. Meanwhile, the lack of information associated with 
open boundaries is usually avoided by a zero Neumann condition at some far distance from the 
domain of interest.’ 

In the case of a transport equation it is known that inflow boundaries can be well represented by 
a Cauchy condition.’ Typical transport phenomena in ground-water problems include the 
movement of heat and solutes in a porous medium. For this kind of problem, mass movement 
through typical outflow or open boundaries is a priori unknown. 

The diffusion equation over a ground-water domain describes the water flow through a 
saturated or partially saturated porous medium. This equation can be linear or non-linear. 
Typical inflow boundaries include the infiltration or precipitation rate at the soil surface. A non- 
zero Neumann condition describes this second-type b o ~ n d a r y . ~  However, inflow or outflow 
boundaries are only known when a Dirichlet condition can be imposed. Otherwise, important 
errors can arise because of the lack of information about the amounts of water that the system is 
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able to pick up or to release through the boundary. In order to avoid most of these errors, an 
impervious second-type condition must be imposed somewhere sufficiently far from the domain of 
interest. A classical example of inflow and outflow open boundaries can be found in the linear 
ground-water saturated flow under a dam. Both inflow and outflow boundaries are represented by 
vertical boundaries placed upstream and downstream in a two-dimensional profile. Another 
example of an open boundary that could be taken into account concerns the non-linear flow 
through the bottom boundary of an unsaturated soil where a deep water table can be found. 

A one-dimensional finite element model is used to simulate the simultaneous transport of water, 
heat and solutes in saturated or partially saturated porous media. The numerical model MELEF- 
3v presented in this study was applied to predict the behaviour offrozen soils4 as well as the effects 
of temperature on the fate of pesticides in the unsaturated zone.5 In the present study the 
behaviour of diffusion and convection-dispersion processes is analysed for open boundaries by 
the finite element method. Depending on the characteristics of these boundaries and on the type of 
problem, better solutions can be obtained if a formal approach, also called an open boundary 
condition, is adequately incorporated in the weak formulation and in the transient solution 
schemes related to the finite element method. 

GOVERNING EQUATIONS 

DzfSusion 

soil can be written6-8 
The equation for the transient flow of water in a slightly compressible and partially saturated 

where p is the water density, H is the water potential ( H  = P + pgz), P is the water pressure, K ( H ) i j  
is the intrinsic permeability tensor, q is the dynamic viscosity, m is the specific moisture capacity 
and Q is a positive value when describing a source function. In (l) ,  i, j =  1, 2, 3 both stand for 
summation. The above equation is non-linear because of the dependence of rn and K on the state 
variable H .  

Transport 

be written'.'' 
The equation for the unsteady transport of heat in a partially saturated porous medium can also 

where T is the temperature, E is the calorific capacity by unit volume of the porous medium, c is 
the specific calorific capacity of water, Gi is the Darcy velocity vector, K i j  is the thermal 
conductivity tensor and To is the known temperature of a source water. 

Finally, the convection-dispersion of solutes in partially saturated soils can be expressed as1-' 

where C is the dissolved solute concentration, C ,  is the dissolved solute concentration in the 
source water, 0 is the water content and D i j  is the hydrodynamic dispersion tensor. 
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BOUNDARY CONDITIONS 

Appropriate boundary conditions are required to solve any of the time-dependent partial 
differential equations given above. The heat and solute transport equations (2) and ( 3 )  have a 
similar mathematical form. In order to avoid repetitions in subsequent explanations, we indicate 
for equation ( 3 )  the conditions that would also apply to the similar transport equation. 

Several types of conditions are possible on the boundaries r.' 

1. First-type or Dirichlet boundary condition 

H(x,, t)= H ,  
C(x i ,  t )= C ,  

for equation (1) 
for equation (3) (4) 

where H ,  and C, are respectively the prescribed hydraulic heads and dissolved solute concentra- 
tions on the boundary r l .  This condition can be usually prescribed for equation (1) at inflow or 
outflow boundaries. In the case of the transport equation (3), the Dirichlet condition is often well 
known on inflow boundaries. 

2. Second-type or Neumann boundary condition 

on r2, ( 5 )  

P 
- K ( H ) i j  - - ni = qH for equation ( 1 )  

-BD..-ni=qc for equation ( 3 )  

v dxj 
ac 

' J  axj  
where q H  and qc are the prescribed water flux and diffusive flux of solute along the boundary (n,  is 
the unit outward normal vector to the boundary). Usually, qH is only known for inflow boundaries 
(e.g. precipitation rate) as well as for assumed impermeable boundaries ( q H  = 0). On the other hand, 
sc is not often known for outflow boundaries. In spite of this, the water flux and the diffusive flux of 
solute are in general considered as non-existent along these unknown boundaries. 

3.  Third-type or Cauchy boundary condition 

n, = qc for equation ( 3 )  on r3, . 

where qc is the prescribed total contaminant flux, i.e. the diffusive flux plus the convective flux of 
solute: 

qH - 
qc=qc+ wiCni=q,+- C. 

P 

Mixed boundary conditions 
infiltration of water occurs: 

are required along those inflow boundaries of the system where 

q H  qc=- c*, 
P 

where C* are prescribed concentrations of the solute in the influx water. At inflow boundaries 
either (4) or (6) is prescribed. Along impermeable boundaries we have 

Wi n, = 0, 

and it is common to assume &=O, so qc is equal to zero as well.' 
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The water flux (qH) and diffusive flux of solute (qC) are not often known at outflow boundaries. 
The water flux is not always known at inflow boundaries either. However, and even if the 
conditions at a specific boundary are unknown, inflow o r  outflow boundaries to diffusion and 
convection4ispersion equations cannot always be physically defined as open boundaries. 

Open boundaries 

First let us consider the convection4ispersion problem. All boundary conditions are based on 
the requirement that for any boundary surface the tracer mass flux (mass per unit area of 
boundary surface) normal to the boundary must be equal on both sides of a given fixed 
boundary. 

Let us suppose that superscript * denotes the porous medium domain external to the boundary. 
When the external domain is also a porous medium, e.g. the same porous medium as the one inside 
the domain, the requirement that the normal mass fluxes be equal on both sides of this boundary is 
expressed by 

The left-hand part of this equation indicates the unknown mass flux inside the domain. This flux 

For a continuous feed solution (the tracer solution is injected at a prescribed rate), equation (7) 
is dependent on the solution C at this point of the boundary. 

becomes a Cauchy boundary:’ 

ac q H  q H  - O D . . - - , + -  C=- C* on r3. 
I1axj P 

This condition implies in itself a discontinuity of the concentration and its derivatives at the 
boundary. However, if this boundary is located at infinity, where continuity would prevail 
(C* = C), the same unsteady solutions as those obtained for a steady Cauchy condition in the finite 
domain can be obtained over the shared part of the semi-infinite domain if in the latter a zero 
Neumann condition at infinity is prescribed, 

- @ D . . - n i = O  ac on r2 at infinity, 
I J  a x j  (9) 

and if initial conditions in both domains are the same, continuous and in conformity with the 
latter Cauchy and Neumann conditions (taking for granted that the physical properties are also 
the same in both cases). Then we could say that an inflow Cauchy condition on a boundary would 
work similarly to a zero Neumann condition at infinity if certain conditions of continuity are 
initially respected close to the boundary. We will also prove this assumption numerically. 

In order to establish the feasibility of the so-called open boundaries, it can be assumed that 
wherever the boundary is located there is no discontinuity and therefore C* = C. Then (7) yields 

ac ac* 
axj I J  ax j  

- O D . . - - , =  -OD. . - - -  n,=&#O on r2, 

which means that there is also continuity in the derivative. This would give the same solutions, 
under the same and continuous initial conditions, as 

ac ac * 
I J  axj a x j  

-OD..  - n, = -ODij __ n, = 0 on Tz at infinity, 
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on a boundary at infinity in a semi-infinite domain. Then, in both cases, the Neumann boundary 
equations (10) and (1 1) will give the same transient solutions over both shared domains if the 
physical properties do not change from near inside to outside the open boundary (from the finite 
domain to the semi-infinite one). The initial conditions must also be the same, continuous and in 
conformity with the last zero Neumann condition at infinity. In transport problems, outflow 
boundaries are continuous and can be defined as typical open boundaries. The open boundary 
condition (10) needs to be formally incorporated on boundaries Tz as well as into the weak 
formulation and in the transient solution schemes related to the finite element method, just as the 
inflow Cauchy condition (8) is usually incorporated on boundaries r3 .' 

There are unknown outflow or inflow boundary conditions for water diffusion problems that 
imply a continuity of the hydraulic head or its derivatives close to the boundary. If this boundary 
corresponds to a typical open boundary, its conditions need to be treated in the same way as 
condition (10) would be: 

H # O  o n r , ,  P 
- K ( H ) i j  - - ni = 

II d x j  

where qH is not known on a boundary located at a finite distance. This means that this kind of 
boundary can be eventually substituted by a zero Neumann condition at infinity in a semi-infinite 
domain: 

(13) 
P dH 
II axj  

- K ( H ) i j - -  n,=O on r2 at infinity. 

Classical examples of inflow and outflow open boundaries for water diffusion problems can be 
found in the linear ground-water saturated flow under a dam. Another example of an open 
boundary could be the non-linear flow through the bottom boundary of an unsaturated soil where 
there is a deeper water table. We will see later whether the non-linearities involved allow us to 
define such a boundary in this way. 

If a formal numerical approach for open boundaries on a finite domain is reliable, it could be 
interpreted as an open condition of the second kind. However, we have seen that open boundaries 
need to be clearly defined within a physical context. 

FINITE ELEMENT FORMULATION 

The Galerkin technique is used to determine approximate solutions to equations (1)-(3) under the 
appropriate initial and boundary conditions. Full details of the solution procedures involved will 
not be given here; however, an outline of our numerical scheme is presented below to provide some 
idea of how the different types of boundary conditions were dealt with (for more details, see 
References 1 and 8). 

Transport 

function N ,  and the value of the state variable at required model points C,: 
An estimate of the solution C can be represented as the product of an appropriate shape 

C = ( N , ) { C , } .  (14) 

Integrating by parts only the dispersion component of the solute transport equation (3), the 
resulting weak formulation gives the following set of finite element equations in matrix form: 
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where [ M I  and [ K ]  are n x n matrices and { F }  is a vector of length n (the nodal points of the 
discretized system: I =  1, 2, . . . , n). These are expressed by 

Mk, =c [ON, ]  dR for k =  1, M k i = O  f o r k # /  
e ne 

(this is a diagonalized form where the nodal time derivatives are weighted averages over the entire 
flow region*), 

where e indicates summation over the elements joining at node k ( k  = 1,2, . . . , n), R is the domain 
of the flow regime and N k ,  , are spatial shape functions. The vector { F }  depends on the conditions 
at the boundaries r. 

With the representation given by (14), the Dirichlet or first-type boundary conditions are 
satisfied at the prescribed concentration nodes on rl directly by the shape functions. Thus for 
these nodes (15) is not actually written. Therefore in this equation the boundary integral is to be 
extended to r2 and r3 only. 

If formulation (15) is followed we set 

along inflow, mixed or Cauchy boundaries with qH and C* prescribed; 
ac 
axj  fr2 { N k }  ODij - n, dT = 0 

along impermeable boundaries; 

along typical outflow or open boundaries. 
Note that by this treatment, this latter condition can be interpreted as a self-imposed condition 

leading to an ill-posed problem. Even though this condition could be seen actually as self-imposed, 
it must be used only on boundaries that have been defined as open, i.e. that would work as a zero 
Neumann condition at infinity over a hypothetical semi-infinite domain. 

Diffusion 

Similar to the expression for representing the solute concentrations, an estimate of the solution 
H can be represented as the product of an appropriate shape function N ,  and the value of the state 
variable at  required model points H,:  

H =  ( N , )  { H , ) .  (19) 

Applying Green’s lemma to the water flow equation (l), the resulting weak formulation gives 
the following set of non-linear equations in matrix form: 

(20) 
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These matrices are expressed by 

h f ( H ) k l = x  1 [ p m ( H ) N k ]  dR for k =  1, M(H)k,=O for k # l  
e RQ 

(which have the diagonalized form’), 

The vector { F }  depends on the conditions at the boundaries r. In equation (20) the boundary 
integral is to be extended to r2 and r3 only. If this formulation is followed we set 

along impermeable boundaries; 

along known inflow or outflow Neumann boundaries; 

a H  

a x j  r2 ‘I 
K ( H I i j  - n i d r = f  K(H) i j t t i  [ Nk a x j  { H , }  dT 

along unknown open boundaries. This condition can be interpreted as a release or sink of water 
outside the domain in order to avoid its storage at the boundary. Note that this kind of boundary 
actually requires to have a physical meaning according to the definition of an open boundary. 
However, non-linear temporal schemes would be needed to solve the transient flow of water in a 
partially saturated porous medium. 

LINEAR SOLUTION METHOD 

Transport 

The implicit difference scheme has been found to provide good results for the time-dependent 
nature of equations (1  5 )  and (20). l 2  In this case, linear convectiondispersion systems can be 
expressed as 

[ A t .  CK] [ M I ]  { cr + ~ r -  cr } = {At(a { F r + A r }  + ( I  -a)  {Fr } - [K1 {Cr})}. (24) 
When a= 1 it is called a fully implicit backward scheme, and when a=0.5 it is the 

Crank-Nicholson scheme. If { F }  depends on the solution, it can be expressed as the sum of two 
parts: 

IF,} = C F ’ I W  +IF”}, {Fr+Ar 1 = CF’1 {Cl + A t }  + { F ” } ;  

that is, 

{Fr+Ar}  =CF’I {Acr}  + CF’I {CrI + {F”3 = I F ’ ]  fACrl  + { F t l .  
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In the case of the solute transport the vector { F”) would consider only the fluxes that would not 
be dependent on the solution, i.e. the steady volumetric and surface fluxes expressed in vector { F }  
of equation (15). Employing this definition in equation (24) yields 

[Ata([K1- CF’1) + 1 { ct + A t -  c t }  = {At( { F t >  - CK1 { c t >  )> ? (26) 
where [F’] is a n x n matrix evaluated on the boundaries. 

Following this set of finite element equations, the matrix [F’] can be written 

along an inflow or Cauchy boundary of the type expressed by equation (16); 

F;,=O 

along impermeable boundaries (17); 

along open boundaries of the type expressed by equation (1 8). 

Diffusion 

A linear form of equation (1) would describe the flow of water in a saturated porous medium. 
Applying the implicit difference scheme and the definitions given above to the linear form of the set 
of finite element equations (20) yields 

[At.([KI - [F’1)+ [MI] { H t + ~ t - H t >  = { A t ( { F t )  - [ K ]  { H t )  * (30) 

F;,=O (31) 

Expressed in matrix form, 

along impermeable (21) and known Neumann boundaries (22); 

along unknown open boundaries of the type expressed by (23). 

NON-LINEAR SOLUTION METHOD 

Diffusion 

Non-linear algorithms may be employed for non-linear problems with transient parameters. In 
a ground-water domain the flow of water through partially saturated soils is a typical non-linear 
phenomenon. Applying the substitution method” to (30) gives the following set of equations in 
matrix form: 

[At.( CK z-2 1 - CF;m+a: 1) + CMZd 11 {H?+ At - Hr+2 1 
= CM :+id 1 { K  - H ?+-A 1 - Ata CK YLd 1 { H  ?LA 1 - At( 1 - 4 CK f 1 {Hf 1 

+ (At((l-4CF;I{Ht} +QCF;m+: l{fG-2 1 + {F’”. (33) 
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In the case of a fully implicit backward scheme (a=  1) we can reduce (33) to 

[At( [KYLd 1 - CF;m+a: I )+ [WYd I1 { W + A t  - K i d  1 
= CM Y Z  1 { K  - YLA 1 + {At( {FZd 1 - CK YLd 1 { HYLd 1 11 1 

where rn indicates the number of iterations of the non-linear algorithm. 
(34) 

MODEL VERIFICATION 

In a one-dimensional finite element domain, hydraulic heads, temperatures and solute concentra- 
tions were represented by spatial quadratic functions (Figure 1). The time step chosen to solve 
each equation at a particular point in time needs to be smaller or equal to the time taken by the 
input data or to evaluate transient parameters if this is the case. The time step is then computed by 
keeping the diffusion parameter within a certain range as well as the Courant and Peclet numbers 

soil surface Basic Element 

I 
I 
I 

8 
I Variables 

bottanof the column 

Figure 1 .  Finite element vertical discretization of the unsaturated-saturated zone of the soil 
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of the corresponding transport phenomena. The choice of the frequency for evaluating transient 
parameters depends on the kind of problem, the stability criteria, the precision desired and the 
CPU time. 

The heat and solute transport portions of the model were tested by comparison with the 
analytical solution proposed by Ogata and Banks.13 This solution is given in one dimension for 
linear convection-dispersion using a step input ( C ,  or To) at z = 0 and a zero gradient ( X / d z  or 
d T / d z )  at z =  - rm. In the case of an outflow boundary it has already been seen that this last 
condition could be well represented, in a finite element numerical model, by an open boundary 
condition. If the bottom of the column is an inflow boundary, the above Neumann condition at 
infinity can be well represented by a third-type or Cauchy condition if continuity is initially 
respected in the proximity of the boundary (Figure 2). However, a zero Neumann condition is 
needed only for impermeable boundaries. Otherwise, outflow boundaries at infinity can also be 
accurately reproduced in a continuous finite domain by an open boundary condition (Figure 3). 
Therefore, in general transport phenomena, if the bottom of the column is considered to have the 
characteristics of an outflow open boundary, i t  does not need an a priori known condition and all 
the results of the discretized domain are able to closely represent the analytical solutions 
(Figure 4). These latter comparisons are shown for a Darcy velocity, soil porosity, longitudinal 
dispersivity and thermal conductivity of the solids of 0.24 m day-', 0.4, 0.2 m and 
14446 Jm- 'day - 'K- '  respectively. 

RELATIVE CONCENTRATION us DEPTH 
rt 1 haur, 2 hnurr, 6 haurs and 2 drys 

0 
0 
0 

1 

8 . 8  

8 . 6  

8.4 

8 . 2  

e 8.2 8.4 8.6 8 . 8  

DEPTH (In) 

Figure 2. Comparison of numerical model and analytical solution results for the convection-dispersion of a solute when 
the water velocity is oriented upwards. Cauchy boundary conditions are imposed at the bottom of the column 
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RELATIVE CONCENTRATION us DEPTH 
rt 2 hours, 6 hours. 1 day m d  2 days 

w 
H 

a 
w 

1 

0 . 8  

0 . 6  

0 . 4  

0 . 2  

e 

0 0.4 0 . 8  1.2 1.6 2 

DEPTH (m)  

Figure 3. Comparison of numerical model and analytical solution results lor convection-dispersion of a solute when the 
water velocity is oriented downwards. Open boundary conditions are imposed at the bottom of the column 

Testing the accuracy of numerical schemes used to solve the one-dimensional transient non- 
linear water flow equation is limited by the scarcity of suitable analytical solutions. In order to 
avoid this difficulty, equation (1) can be expressed in the Richards form 

z-a { K ~  apse} K , ~ K ,  
at aZ ae a Z  'I az 

-Kr- -  +pg- - - ,  (35) 

where K O  and K, are the saturated intrinsic and relative permeabilities of water respectively 
(K = K O  Kr). Putting K, = S and P =a  In S yields 

where S is the water saturation, n is the porosity and a is a constant defined for each type of soil. 
Equation (36) has the form of a transport equation and therefore it can also be compared to the 
analytical solution of Ogata and Banks.I3 The physical properties used hereafter for the 
simulations concerning the transient flow of water correspond quite well to a fine sand, lightly silty 
soil. The hypothetical impervious boundary condition at z = - co could be represented in the 
unsaturated water flow equation (1) by making dH/az=pg  at the top of the discretized column 
sufficiently far from the water table (Figure 5). The results show nearly steady conditions after 6 h 
of water intake from a water table towards the unsaturated zone of an initially almost dry soil. 
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R E L A T I V E  TEMPERATURE us DEPTH 
r t  1, 4, 10, 28 and 30 days 

1 

0 crlculrtrd 

8 . 8  

0 . 6  

8.4  

0 . 2  
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0 0 .4  0 . 8  1.2 1.6 2 

DEPTH (m) 

Figure 4. Comparison of numerical model and analytical solution results for convection4spersion of heat when the 
water velocity is oriented downwards. Open boundary conditions are imposed at the bottom of the column 

In one-dimensional ground-water phenomena the non-linear flow through the bottom 
boundary of an unsaturated soil could be interpreted as a nearly open boundary. This assumption 
would become more and more true if a deeper water table were connected by capillarity to the 
unsaturated domain of interest. However, existent non-linearities imply transient and therefore 
different physical properties between this boundary and the lower unsaturated soil. Furthermore, 
nearly zero but non-zero Neumann conditions can be found at a deep and steady water table. 
Figure 6 shows one-dimensional solutions for three different boundary conditions at the bottom 
of an initially steady unsaturated column with a 10 m deep water table: (a) Dirichlet condition at  
the 10 m deep steady water table; (b) open condition at a depth of 2 m; (c) zero Neumann 
condition at a depth of 2 m. At the top of the one-dimensional soil column, water infiltrates at the 
rate of 1 cmday-’. As could be expected, the solutions for boundary conditions (a) and (b) 
compare quite well. Figure 7 shows solutions for a similar soil column where an infiltration of 
2 cmday-’ occurs at the surface. A steady unsaturated soil with a 5 m deep water table can be 
defined initially, and three similar boundary conditions at a suitable bottom of the column can 
also be prescribed: (a) Dirichlet condition for the steady 5 m deep water table; (b) open condition 
at a depth of 2 m; (c) zero Neumann condition at a depth of 2 m. In this case the hydraulic heads 
for boundary conditions (a) and (b) compare worse than for the case of Figure 6. Our conclusion is 
that open boundaries cannot be defined for non-linear phenomena over a finite domain. The 
reason is that, first, the same physical properties cannot always be respected on the correspondent 
semi-infinite domain. Then, the examples concerning the hypothetical open boundary conditions 
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R E L A T I V E  SATURATION us DEPTH 
at 5 and 15 minutes, 1 and 6 hours 
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8 8 . 4  8 . 8  1.2 1.6 2 

Figure 5. Comparison of numerical model and analytical solution results for water intake from a 2 m deep water table 
towards the unsaturated zone of an initially dry soil 

of Figures 6 and 7 cannot be considered to have actual open boundaries. Secondly, the assumed 
zero Neumann condition at infinity is not respected at a boundary where a Dirichlet condition 
would control the position of a steady water table. Nevertheless, for the type of non-linearity we 
are working with, numerical simulations taking into account initially steady and open boundary 
conditions have proved to give better results for deeper water tables and lighter infiltration rates. 
This means that, near the surface of the soil, non-linear unsaturated problems could be quite 
accurately treated by a suitable open boundary condition if this boundary is near enough to the 
domain of interest but far enough from the water table position. However, the reliability of this 
formal approach for two and three dimensions remains its greatest interest. 

In all of the above cases the Crank-Nicholson time-dependent scheme shows the most precise 
results. 

CONCLUSIONS 

A one-dimensional finite element model taking into account a formal approach for open 
boundaries in typical ground-water problems has been developed. The Galerkin technique, in 
conjunction with several types of boundaries and initial conditions, was used to solve water 
diffusion, heat and solute transport in saturated-unsaturated soils. 

Open conditions have been developed to take into account open boundaries for linear and non- 
linear ground-water systems. The equivalences between outflow-inflow boundary conditions at a 
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Figure 6. Comparison of numerical results for water infiltration (1 cmday-') in a 10 m thick unsaturated column where 
three different conditions were imposed on hypothetical boundaries at a depth of 2 and 10 m 

finite distance and at infinity have been established. In the case of linear transport phenomena, 
Cauchy and open conditions for inflow and outflow boundaries respectively placed at a finite 
distance have been found to reproduce accurately the corresponding zero Neumann conditions at 
infinity. Applications also take into account the described open boundary conditions for one- 
dimensional water flow in non-linear unsaturated soils. No physical meaning or actual conditions 
have been found in one dimension to justify the existence of an open boundary within the 
unsaturated zone. This would imply the existence of an impervious Neumann condition in a semi- 
infinite domain which would keep the same physical properties as the finite domain. Nevertheless, 
for this kind of non-linearity, more precise solutions in the unsaturated zone can be obtained for 
deeper water tables and lighter infiltration rates. In the same way we do not see a priori limitations 
to applying this technique to other numerical problems, in two or three dimensions, as long as zero 
Neumann conditions at infinity have a real physical meaning for the kind of problem to be solved. 
Even though this is not actually the case, certain lightly non-linear open boundaries could be 
solved by this formal approach without a significant loss of accuracy. 

The heat and solute transport, as well as the flow portions of the numerical model, were 
precisely compared with analytical solutions. In general, the open boundary condition consumes 
less computer time and allows more accurate simulations of linear and non-linear diffusion and 
transport problems. 
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Figure 7. Comparison of numerical results for water infiltration (2  cm day-') in a 5 m thick unsaturated column where 
three different conditions were imposed on hypothetical boundaries a t  a depth of 2 and 5 m 
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